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CUTTING STATE IDENTIFICATION
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Cutting states associated with the orthogonal cutting of stiff cylinders are identified
through an analysis of the singular values of a Toeplitz matrix of third order cumulants
of acceleration measurements. The ratio of the two pairs of largest singular values is shown
to differentiate between light cutting, medium cutting, pre-chatter and chatter states.
Sequences of cutting experiments were performed in which either depth of cut or turning
frequency was varied. Two sequences of experiments with variable turning frequency and
five with variable depth of cut, 42 cutting experiments in all, provided a database for the
calculation of third order cumulants. Ratios of singular values of cumulant matrices find
application in the analysis and control of orthogonal cutting.
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1. INTRODUCTION

The objective of constructing efficient machine tools capable of producing parts of high
quality with minimum human intervention has motivated numerous research efforts
directed towards the understanding of fundamental aspects of cutting dynamics. Although
models of single point turning are available, identification of all of the relevant processes,
their interdependence and mathematical representation is as yet an unresolved task of
considerable difficulty. A review of cutting vibration research is given in reference [25].

Linear cutting models have been represented in the frequency domain by a single transfer
function or a third order flexibility matrix, [10, 19, 15]. Structural transfer functions have
been experimentally identified in references [24] and [9]. Models based on steady cutting
which relate cutting forces to the shear angle are developed in reference [14]. The dynamic
counterpart of this theory has been used to develop non-linear cutting force models
[15, 27, 12]. Time series analysis has been used to estimate parameters in linear models
which best approximate cutting measurements [18, 2]. These results have provided a basis
for methods of chatter prediction. Linear prediction models characteristically represent the
cutting system by a closed loop with time delays. Linear control theory has been applied
to determine the critical depth of cut [19].

Recently developed signal processing methodologies including neural networks and
wavelets have been applied to the analysis and control of cutting dynamics. In reference
[23] two back propagation neural networks, one for frequency estimation, the other for
sine wave identification, were trained on numerically generated sine and triangular waves.
The choice of training functions was predicated on the assumption that ‘‘regenerative
self-excited vibrations and forced chatter created by force distributions amplified by
structural resonance have a distinctive pattern’’. These chatter vibrations were assumed to
have a harmonic shape, exponential growth of amplitude and a frequency close to the
lowest natural frequency of the structure. Tests were conducted on turning long slender
bars. The trained neural network was able to detect the onset of the transition to chatter.
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No attempt was made to detect other cutting states. The cutting state to be identified was
characterized by other means before numerically generated functions were constructed to
train the neural network.

Wavelet transforms were employed in reference [8] to study the dynamical characteristics
and frequency content of non-regenerative thread and slot cutting processes. Tool
acceleration and cutting forces were measured for feeds parallel and perpendicular to the
rotational axis of a turning specimen. The effects of spindle speed, feed rates and width
of cut were studied. Time–frequency plots based on Gaussian wavelet transforms were used
to detect and characterize non-stationary phenomena such as built-up edge breakage.
Wavelet analysis suggested that the non-regenerative cutting process is probably
quadratically non-linear [3]. Chaotic vibrations were detected for several sets of cutting
parameters. It was suggested that a wavelet transform combined with a chatter model be
used for on-line control of the cutting process. However, real time or simulated control
was not reported. Differentiation between various cutting states was made on the basis
of qualitative features of power spectra and wavelet based time frequency plots. Chaotic
behavior was identified through the calculation of phase plane plots, power spectra,
Poincaré maps and fractal dimensions [1].

The identification of cutting states, associated with the orthogonal cutting of stiff
cylinders, is realized in the following through an analysis of the behavior of the singular
values of a Toeplitz matrix of third order cumulants of acceleration measurements. A
bispectral analysis of cutting tool acceleration measurements has shown [3] that the cutting
process is quadratically phase coupled. The determination of coefficients in an
autoregressive approximation of the bispectrum [20] involves the construction of an
unsymmetric Toeplitz matrix, R, of third order cumulants. It is shown that the behavior
of the dominant pairs of singular values of R provides a basis for the identification of
cutting states. In particular, the ratio of the two pairs of largest singular values, the R-ratio,
is shown to differentiate between light cutting, medium cutting, pre-chatter and chatter
states. Sequences of cutting experiments were performed in which either depth of cut or
turning frequency was varied while all other cutting parameters were held constant. Two
sequences of experiments with variable turning frequency and five with variable depth of
cut, a total of 42 cutting experiments, were studied. Results typical of the entire set are
presented for a sequence of variable cutting depth and a sequence of variable turning
frequency. The R-ratio evaluated at maxlag=100, equation (4), is close to one for all cases
of light cutting and two or greater for chatter. For intermediate states the ratio increases
as the chatter state is approached.

A description of the experimental apparatus is followed by definitions and results from
bispectral theory, third order recursion and the R matrix. Results from the theory of
singular value decomposition are presented and applied to three different phase coupled
trigonometric functions. R-ratios are computed as a function of lags, exhibiting similarities
with R-ratios versus lags based on cutting acceleration measurements. An analysis of
sequences of cutting experiments shows that singular values of the R matrix differentiate
between cutting states. The R-ratios have potential application in the control of orthogonal
cutting.

2. EXPERIMENTAL APPARATUS

A schematic diagram of the experimental apparatus exployed is shown in Figure 1, and
consists of a Hardinge CNC lathe, a special force dynamometer (utilizing three Kistler
9068 force transducers) and its associated electronics, and a digital spectrum analyzer
(Hewlett Packard 3566A) for data acquisition and real-time analysis.



   17

Figure 1. The experimental system.

All experiments involved only right-handed orthogonal cutting. Positive rake tool inserts
were employed (Kennametal TPMR322) and were supported by Kennametal
KT-GPR123B tool holders. The tool holder–insert combination resulted in a rake angle
of 5° and a clearance angle of 4°. Cylindrical workpieces of 1020 steel were machined under
a wide range of cutting conditions. Since all workpieces were stubby, workpiece modal
characteristics did not affect the turning dynamics. The sampling rate was 4096 Hz and
the cut off frequency was 1100 Hz. Averaging was performed over the time record
assuming that, in each case, the system was in a steady state. Record lengths were from
20 to 60 s except for chatter records, which had a duration of 2 s.

3. THIRD ORDER RECURSION

The following definitions and theorems [16, 17] are included to provide a background
in bispectral theory and for subsequent application. Let c3(t1, t2)0 the third order
cumulant of the real third order stationary random process X(k), k=0, 21, 22, . . . .
If the mean of X(k) vanishes, then c3 (t1, t2)=m3(t1, t2), where m3(t1, t2)=E(X(k),
X(k+ t1)X(k+ t2)); E is the expected value, which may be estimated by

m3(t1, t2)= (1/2n) s
+n

k=−n

X(k)X(k+ t1)X(k+ t2), (1)

where n:+a. The bispectrum of X(k), C3(v1, v2), is defined by

C3(v1, v2)= s
+a

t1 =−a

s
+a

t2 =−a

c3(t1, t2) exp[−j(v1t1 +v1t2)]; (2)

=C3(v1, v2)=0the bispectral index.
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Consider an autoregressive, AR, estimation of the bispectrum, C3(v1, v2), equation (2)
[16, 17]. A pth order AR process is described by

X(k)+ s
p

i=1

a(i)X(k− i)=W(k), (3)

where it is assumed that W(k) is non-Guassian, E(W(k))=0, E(W3(k))= b. Multiplying
through equation (3), summing and noting equation (1) gives

cx
3(−k, −l)+ s

p

i=1

a(i)cx
3(i− k, i− l)= bd(k, l), (4)

where k, lq 0. Letting k= l in the third order recursion equation (4) with k=0, . . . , p
yields p+1 equations for the p+1 unknowns a(i) and b; p+10maxlag. In matrix
notation,

Ra= b, (5)

where

g(0, 0) g(1, 1) . . . g(p, p)

g(−1, −1) g(0, 0) . . . g(p−1, p−1)
R=G

G

G

G

G

.

.

.
.
.
.

G
G

G

G

G

, (6)

g(−p, −p) g(−p+1, −p+1) . . . g(0, 0)

g(i, j)0 cx
3(i, j), a0 [1, a(1), . . . , a(p)]T and b0 [b, 0, . . . , 0]T. R is in general a

non-symmetric Toeplitz matrix. A sufficient but not necessary condition for the
representation in equation (5) to exist is the symmetry and positive definiteness of R. A
discussion of this and related conditions is given in reference [17]. The bispectrum
corresponding to equation (3) is given by [4]

Cx
3(v1, v2)= bH(v1)H(v2)H*(v1 +v2), (7)

where

H(v)=1>01+ s
p

n=1

a(i) exp(−jvn)1 (8)

and H*(v)0 complex conjugate of H(v).
An estimate of the R matrix, equation (6), and bispectrum, equation (7), for a data set

X(I), I=1, . . . , N, may be formed [16, 17] as follows.
(1) Segment the data set into K records of M samples each. Xi(k), k=1, 2, . . . , M, are

data points associated with the ith record.
(2) Compute cx

3,i(m, n) for the ith record as

cx
3,i =(1/M) s

b

l= a

X(i)(l)X(i)(l+m)X(i)(l+ n), (9)

where i=1, 2, . . . , K, a0max (1, 1−m, 1− n) and b0min(M, M−m, M− n).
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(3) Average cx
3,i(m, n) over all K records,

ĉ3(m, n)= (1/K) s
K

i=1

cx
3,i(m, n), (10)

to yield the estimate ĉ3(m, n) or c3(m, n). Form an estimated R matrix by replacing c3(m, n)
by ĉ3(m, n) in equation (6). Estimated values of a follow from equation (5). These results
implemented in reference [22] are subsequently applied to orthogonal cutting data.

AR models were shown in references [16, 17] to be effective detectors of quadratic phase
coupling. Singular values of the R matrix, equation (6), of interest in the identification of
orthogonal cutting states, are now considered.

4. SINGULAR VALUE DECOMPOSITION

Fundamental properties of singular values are discussed and applied to given phase
coupled test functions. If A is a real m× n matrix, then there exist orthogonal matrices
U$Rm× n and V$Rm× n such that

UTAV=diag(s1, . . . , sq)$Rm× n, (11)

where q=min(m, n), s1 e s2 e . . .e sq e 0 are the singular values and Rm× n denotes a
real m× n matrix. A criterion for selecting the autoregressive order, p, in equation (3) is
given in references [17, 22]. p is chosen to equal the number of singular values of the R

matrix which are above the noise floor. Note that if s1 e · · ·q sr q sr+1 = · · ·= sq =0,
then rank (A)= r; references [5, 7].

The singular values of the matrix A may be geometrically interpreted as the lengths of
the semi-axes of the hyperellipsoid, E, defined by the mapping of the unit sphere Ax, where
x is an arbitrary unit vector, =x==1. The singular values, si , and their ratios are invariant
with respect to translations and rigid rotations of E.

The singular values, si(A), and eigenvalues, li(A), of a square matrix, A, are closely
related in several instances. If A is positive definite, then si(A)= li(A), while sj(A)= =lj(A)=
if A is normal [5, 7]. A matrix A$Rn× n is positive definite if xTAxq 0 for all non-zero x$Rn.
A matrix A$Cn× n is normal if A*A=AA*, where A* is the Hermitian conjugate of A. It
follows that A is normal if and only if there exists a unitary Q$Cn× n such that
Q*AQ=diag(l1, . . , ln); see references [5, 7]. Since R matrices, equation (6), associated
with cutting data are neither positive definite nor normal, it follows that in general for these
cases si(A)$ =li(A)=.

Relationships between phase coupled trigonometric functions and the singular values of
the corresponding R matrix were established through a study of three functions fi(t), where

f1(t)= cos (2p×100t+f1)+ cos (2p×100t+f2)+0·2 cos (2p×200t+f1 +f2),

(12)

f2(t)=0·9 cos (2p×90t+f1)+1·0 cos (2p×100t+f2)

+0·2 cos (2p×190t+f1 +f2), (13)

f3(t)=1·0 cos (2p×90t+f1)+1·0 cos (2p×100t+f2)

+1·0 cos (2p×190t+f1 +f2)+1·0 cos (2p×100t+f2)

+1·0 cos (2p×110t+f3)+0·5 cos (2p×210t+f2 +f3), (14)
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Figure 2. Test function f1(t); (a) Bispectrum of f1(t); (b) singular values versus maxlag for f1(t); (c) R-ratio
versus maxlag for f1(t).

and where the fi are mutually independent and uniformly distributed over [0, 2p]. The fi(t)
functions were sampled at 1024 Hz over an interval of 10 s. R matrices were evaluated for
each fi(t) by averaging over ten 1 s intervals; see equations (6) and (9).

In equation (12), f1(t), is an example of the self-phase coupling of a 100 Hz frequency
component. In the experimental data studied frequency components in the neighborhood
of 100 and 200 Hz were always observed in the power spectra of cutting states close to
chatter. A peak with frequency co-ordinates in the neighborhood of (100 Hz, 100 Hz),
appeared in the bispectrum of cutting states in the neighborhood of chatter. The
bispectrum, (2), of f1(t) is shown in Figure 2(a). A single peak is observed at (100, 100).
The singular values of R are plotted in Figure 2(b) as a function of maxlag (4). A pair
of singular values is associated with each frequency component. Singular values in the
noise floor have no significance. The ratio of the mean of the largest pair of singular values
to the mean of the second largest pair defines a non-dimensional ratio of invariants of R,
the R-ratio. This ratio is shown as a function of maxlag for f1(t) in Figure 2(c): the
R-ratio2 2·0 for maxlagq 30.

In equation (13), f2(t), involves the phase coupling of 90 and 100 Hz components. This
approximates the coupling of the first natural frequency of the cutting system, 2100 Hz,
with a side band at 90 Hz. The bispectrum of f2(t) is shown in Figure 3(a). The peak at
(100, 90) indicates phase coupling between the 90 and 100 Hz components. Symmetry of
the bispectrum with respect to the line f1 = f2 results in a peak at (90, 100). The mean of
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the first pair of singular values is nearly equal to the mean of the second pair of singular
values for maxlagq 80. Note Figure 3(b) for maxlagq 90, for which 1·0QR-ratioE 1·2.

In equation (14), f3(t) is the sum of a phase coupled component at 100 Hz and 110 Hz
and a phase coupling of 90 and 100 Hz components. The bispectrum of f3(t) is shown in
Figure 4(a), with peaks at (100, 110), (100, 90) and (110, 100), (90, 100) because of
symmetry. In Figure 4(b), the R-ratio is plotted as a function of maxlag, from which it
is seen that the R-ratio 21·5 for maxlagq 80.

In the instances discussed above, the R-ratio discriminates between the self-phase
coupling of trigonometric functions, phase coupling of nearly equal frequency components
and a linear combination of both. It is subsequently shown that f1, f2 and f3 have R-ratios
which share certain similarities with the R-ratios of near chatter states, heavy cutting,
cutting states distant from chatter, light cutting and intermediate states.

5. CUTTING STATE CHARACTERIZATION

Sequences of cutting experiments were performed in which either the depth of cut or
the turning frequency was varied with all other cutting parameters held constant. Singular
values of R, equation (6), were computed for two sequences with variable turning
frequency and five sequences with variable depth of cut over a turning frequency range
of 290–852 rpm. Each variable cutting depth sequence ended in chatter while each variable

Figure 3. Test function f2(t). (a) Bispectrum of f2(t); (b) R-ratio versus maxlag for f2(t).
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Figure 4. Test function f3(t). (a) Bispectrum of f3(t); (b) R-ratio versus maxlag for f3(t).

turning frequency sequence contained at least one chatter state. A total of 42 cutting
experiments were performed. Typical sequences have been selected from the set.

For sequence 1, s-1, the following data was used: turning frequency=460 rpm, rake
angle=5°, surface speed=90 m/min, feed rate=0·007 in/rev., re-sampling
rate=1024 Hz, frequency cut-off=1100 Hz, and depth of cut=2·5, 2·6, 2·7 and 2·8 mm,
at which depth chatter was observed.

Singular values of R, equation (6), and the R-ratio versus maxlag are shown in
Figures 5(a) and (b) for a depth cut of 2·5 mm which corresponds to light cutting. Four
dominant singular values occur in two pairs, which approach each other as the parameter
maxlag increases. The R-ratio, shown in Figure 5(b), is close to 1·0. For
70EmaxlagE 100, 1·12eRe 1·08. The behavior of the R-ratio as a function of maxlag
has similarities with that of f2(t), in equation (13); see Figure 3(b). f2(t) contains two phase
coupled trigonometric functions of 90 and 100 Hz which approximate phase coupling
between the first natural frequency of the system at 98 Hz and a lower frequency
component of the sideband structure.

Chatter was observed for a depth cut of 2·8 mm. Singular values of R and the R-ratio
versus maxlag are shown in Figures 6(a) and (b). One pair of singular values is dominant.
For 20EmaxlagE 100, 2·0ER-ratioE 2·4. The R-ratio as a function of maxlag is
similar to that of f1(t), in equation (12)—see Figures 2(b) and 6(b)—which represents
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self-phase coupling of the 100 Hz component. The presence of self-phase coupling in the
time series is confirmed by peaks in the power spectrum at 100 and 200 Hz and a peak
in the bicoherence index at (100, 100). These results are consistent across all sequences of
experiments in which the depth of cut varies. For increasing depth of cut the R-ratio clearly
differentiates between light cutting and chatter.

Two intermediate states with depths of cut of 2·6 and 2·7 mm complete the sequence
s-1. Singular values and the R-ratio versus maxlag are shown in Figures 7(a) and (b),
respectively, for the 2·6 mm case. For 50EmaxlagE 110, the R-ratio2 1·6; see Figure
7(b). There is a similarity between Figure 4(b), the R-ratio for f3(t), and Figure 7(b). The
R-ratios are close to one another for 50EmaxlagE 110.

Singular values and the R-ratio versus maxlag are shown in Figures 8(a) and (b),
respectively, for the 2·7 mm case. For maxlag q 60 the R-ratioQ 2·0 declines to 1·35 for
maxlag=150, Figure 8(b). The largest pair of singular values, shown in Figure 8(a),
behaves similarly to the largest pair of the chatter case, shown in Figure 6(a), for
maxlagQ 60. For maxlagq 60 the previous smaller pair of singular values is replaced by
a pair with a trajectory of greater slope, being nearly parallel with the trajectory of the

Figure 5. Data set s-1, 2·5 mm. (a) Singular values versus maxlag; (b) R-ratio versus maxlag.
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Figure 6. Data set s-1, 2·8 mm. (a) Singular values versus maxlag; (b) R-ratio versus maxlag.

largest pair. The distance between the pairs remains constant; consequently their ratio
decreases as their magnitude increases. The fi test functions do not exhibit this behavior;
see equations (12), (13) and (14).

Sequence 2, s-2, is characterized as follows: depth of cut=2·8 mm, rake angle=5°,
surface speed=90 m/min, feed rate=0·007 in/rev, re-sampling rate=1024 Hz, frequency
cut-off=1100 Hz, and turning frequency=335, 360, 371, 380 and 390 rpm. Chatter was
observed at 371 rpm. The boundary between the chatter and non-chatter states consists
of a series of lobes which, as a function of cutting depth, project downward into the
non-chatter region. In contrast to s-1, this results in the occurrence of multiple chatter
states as a function of the experimental variable turning frequency. The choice of depth
of cut=2·8 mm places many of the experimental cutting states close to, if not in the
chatter region. The 360–390 rpm cases are spaced at roughly 10 rpm intervals,
symmetrically situated with respect to the chatter state at 371 rpm. The R-ratio for the
chatter state, shown in Figure 9(a), bears a strong resemblance to the R-ratio of the chatter
state occurring in s-1; see Figure 6(b). In Figure 9(a), 2·0ER-ratioE 2·3 for
12EmaxlagE 150.
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The R-ratios for s-2, 360 and 380 rpm, are given in Figures 9(b) and (c), respectively.
Their qualitative behavior is similar to that of the cutting state shown for s-1, 2·7 mm—see
Figure 8(b)—which immediately precedes the chatter state at s-1, 2·8 mm; see Figure 6(b).
In Figures 9(b) and (c) is shown a maximum in the R-ratio of approximately 2·5 in the
neighborhood of maxlag=60. The R-ratio for s-2, 360 and 380 rpm decreases for
maxlagq 60, reaching values of 1·99 and 1·68 at maxlag=100 and 1·5 and 1·3 at
maxlag=150, respectively. The R-ratio for s-2, 390 rpm, is differentiated from the
previous two cases, reaching a maximum value of 2·5 at maxlag=40 and decreases to 1·07
at maxlag=100; see Figure 9(d). The R-ratio versus maxlag plot for s-2, 335 rpm, shown
in Figure 9(e), is similar to the plots of s-2, 360 and 390 rpm.

The time series studied are modulated by a function with a fundamental frequency equal
to the turning frequency. The peak in the R-ratio versus the maxlag plots for s-2, 335, 360
and 380 rpm, occur at maxlag2 65. This corresponds to one half of the period of the
fundamental frequency of the modulation function. The decline in the R-ratio for
maxlagq 65 may therefore be caused by the detection of the modulation function.

Figure 7. Data set s-1, 2·6 mm. (a) Singular values versus maxlag; (b) R-ratio versus maxlag.
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Figure 8. Data set s-1, 2·7 mm. (a) Singular values versus maxlag; (b) R-ratio versus maxlag.

6. CONCLUSIONS

The presence of quadratic phase coupling in orthogonal cutting time series has been
previously demonstrated [3]. The Toeplitz R matrix, given in equation (6), of the third
order cumulants was shown in references [16, 17] to determine the coefficients in an
autoregressive esimation of the bispectrum. In the present study singular values of R, based
on cutting tool acceleration measurements, were shown to characterize cutting states,
differentiating between light cutting, pre-chatter and chatter. In particular, the ratio of the
mean of the two dominant pairs of singular values, the R-ratio, evaluated for
maxlag=100, approximates one for light cutting, two or more for chatter and near chatter
states and takes intermediate values for intermediate states, increasing from one to two
as chatter is approached. This behavior was observed in an analysis of tool acceleration
time series for five sequences of cutting experiments with increasing depth of cut and two
sequences with variable turning frequency. All experiments utilized very stiff workpieces,
with the tool geometry and material properties held constant. For chatter and light and
intermediate cutting the R-ratio is seen to be a constant or slowly changing function of



   27

Figure 9. Data set s-1; R-ratio versus maxlag. (a) 371 Hz; (b) 360 Hz; (c) 380 Hz; (d) 390 Hz; (e) 335 Hz.

maxlag for maxlag q 40, as given in equation (4); see Figures 5(b), 6(b), 7(b) and 9(a). The
R-ratio versus maxlag function for near chatter cutting states exhibited a well defined
maximum in the interval 40 QmaxlagQ 65, followed by a relatively steep decline; see
Figures 8(b) and 9(b)–(e). In some instances, the R-ratio appeared to approach an
asymptotic limit for maxlagq 100.

The application of neural networks to chatter identification in reference [23] required
the characterization of chatter by other means, so that training functions could be
constructed with the necessary characteristic properties. For the experimental data
examined here, the R-ratio characterized a continuous range of cutting states from light
cutting to chatter without the necessity of training procedures. However, once trained,
neural nets were shown to be capable of on-line chatter identification.

In the wavelet analysis of reference [8] the identification of cutting states was based on
qualitative features of wavelet based time–frequency plots. The R-ratio provides a
qualitative, and evaluated for a specific value of maxlag, a quantative characterization of
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the cutting state. Test functions were studied with R-ratios versus maxlag, as given in
equation (4), plots similar to those of the cutting states. The R-ratio and other
non-dimensional functions of singular values find application in the control of orthogonal
cutting.
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